
polypy Documentation
Release 0.8.1

Adam R. Symington

Mar 04, 2021





Contents

1 Installation 7

2 Tests 9

3 Documentation 11

4 License 13

5 Detailed requirements 15

6 Contributing 17

7 indices and tables 63

Python Module Index 65

Index 67

i



ii



polypy Documentation, Release 0.8.1

Contents 1



polypy Documentation, Release 0.8.1

2 Contents



polypy Documentation, Release 0.8.1

This is the documentation for the open-source Python project - polypy. A library designed to facilitate the analysis
of DL_POLY and DL_MONTE calculations. polypy is built on existing Python packages that those in the solid
state physics/chemistry community should already be familiar with. It is hoped that this tool will bring some benfits
to the solid state community and facilitate data analysis and the generation of publication ready plots (powered by
Matplotlib.)

The main features include:

1. Method to analyse the number denisty of a given species in one and two dimensions.

• Generate a plot of the total number of species in bins perpendicular to a specified direction.

• Generate a plot of the total number of species in cuboids parallel to a specified direction.

2. Method calculate the charge density from the number density.

• Convert number densities of all species in bins perpendicular to a specified direction into the charge density.

3. Calculate the electric field and electrostatic potential from the charge density.

• Solves the Poisson Boltzmann equation to convert the charge density into the electric field and the electro-
static potential.

4. Calculate the diffusion coefficient for a given species from a mean squared displacement.

• Carries out a mean squared displacement on an MD trajectory.

• Calculates the diffusion coefficient.

• Uses the density analysis and the diffusion coefficient to calculate the ionic conductivity.

Contents 3

https://www.scd.stfc.ac.uk/Pages/DL_POLY.aspx
https://www.ccp5.ac.uk/DL_MONTE


polypy Documentation, Release 0.8.1

4 Contents



polypy Documentation, Release 0.8.1

The code has been developed to analyse DL_POLY and DL_MONTE calculations however other codes can be incor-
porated if there is user demand. polypy was developed during a PhD project and as such the functionality focuses on
the research questions encountered during that project, which we should clarify are wide ranging. Code contributions
aimed at expanding the code to new of problems are encouraged. The code has been developed to analyse DL_POLY
and DL_MONTE calculations however other codes can be incorporated if there is user demand. Other formats, such as
pdb or xyz can be converted to DL_POLY format with codes such as <atomsk. and then analysed with polypy. Users
are welcome to increase the file coverage by adding a reading function for a different format. This can be accomplished
by adding to the read module which has a class for each unique file type that converts it to a polypy.read.trajectory
object.

polypy is free to use.

A full list of examples can be found in the examples folder of the git repository, these include both the Python scripts
and jupyter notebook tutorials which combine the full theory with code examples. It should be noted however that
DL_POLY HISTORY files and DL_MONTE ARCHIVE files are sizable (1-5GB) and as such only short example
trajectories are included in this repository. Notebooks are provided here to illustrate the theory but are not practicle.

Contents 5

https://atomsk.univ-lille.fr/


polypy Documentation, Release 0.8.1

6 Contents



CHAPTER 1

Installation

polypy is a Python 3 package and requires a typical scientific Python stack. Use of the tutorials requires Ana-
conda/Jupyter to be installed.

To build from source:

pip install -r requirements.txt

python setup.py build

python setup.py install

Or alternatively install with pip

pip install polypy

Using conda,

conda skeleton pypi polypy

conda build polypy

conda install --use-local polypy

7



polypy Documentation, Release 0.8.1

8 Chapter 1. Installation



CHAPTER 2

Tests

Tests can be run by typing:

python setup.py test

in the root directory.

9



polypy Documentation, Release 0.8.1

10 Chapter 2. Tests



CHAPTER 3

Documentation

To build the documentation from scratch

cd docs

make html

11



polypy Documentation, Release 0.8.1

12 Chapter 3. Documentation



CHAPTER 4

License

polypy is made available under the MIT License.

13



polypy Documentation, Release 0.8.1

14 Chapter 4. License



CHAPTER 5

Detailed requirements

polypy is compatible with Python 3.5+ and relies on a number of open source Python packages, specifically:

• Numpy

• Scipy

• Matplotlib

15



polypy Documentation, Release 0.8.1

16 Chapter 5. Detailed requirements



CHAPTER 6

Contributing

6.1 Contact

If you have questions regarding any aspect of the software then please get in touch with the developer Adam Symington
via email - ars44@bath.ac.uk. Alternatively you can create an issue on the Issue Tracker.

6.2 Bugs

There may be bugs. If you think you’ve caught one, please report it on the <Issue Tracker. This is also the place to
propose new ideas for features or ask questions about the design of polypy. Poor documentation is considered a bug
so feel free to request improvements.

6.3 Code contributions

We welcome help in improving and extending the package. This is managed through Github pull requests; for external
contributions we prefer the “fork and pull” workflow while core developers use branches in the main repository:

1. First open an Issue to discuss the proposed contribution. This discussion might include how the changes fit
surfinpy’s scope and a general technical approach.

2. Make your own project fork and implement the changes there. Please keep your code style compliant with
PEP8.

3. Open a pull request to merge the changes into the main project. A more detailed discussion can take place there
before the changes are accepted.

For further information please contact Adam Symington, ars44@bath.ac.uk

17

mailto:ars44@bath.ac.uk
https://github.com/symmy596/PolyPy/issues
https://github.com/symmy596/PolyPy/issues
https://guides.github.com/activities/forking/
mailto:ars44@bath.ac.uk


polypy Documentation, Release 0.8.1

6.4 Future

Listed below are a series of useful additions that we would like to make to the codebase. Users are encouraged to
fork the repository and work on any of these problems. Indeed, if functionality is not listed below you are more than
welcome to add it.

• RDF

• Diagonal slices

• Regional MSDs in a cube

6.5 Acknowledgements

This package was written during a PhD project that was funded by AWE and EPSRC (EP/R010366/1). The polypy
software package was developed to analyse data generated using the Balena HPC facility at the University of Bath
and the ARCHER UK National Supercomputing Service (http://www.archer.ac.uk) via our membership of the UK’s
HEC Ma-terials Chemistry Consortium funded by EPSRC (EP/L000202).The author would like to thank Andrew R.
McCluskey, Benjamin Morgan, Marco Molinari, James Grant and Stephen C. Parker for their help and guidance during
this PhD project.

6.6 API

6.6.1 Installation

polypy can be installed from the PyPI package manager with pip

pip install polypy

Alternatively, if you would like to download and install the latest development build, it can be found Github along
with specific installation instructions.

6.6.2 Theory

polypy is a Python module to analyse DLPOLY and DLMONTE trajectory files. Before using this code you will need
to generate the relevant data. polypy is aimed at the solid state community and there are a wide range of applications.

Charge Density

Using the density module you can calculate the number density of atoms

𝜌𝑞(𝑧) =
∑︁
𝑖

𝑞𝑖𝜌𝑖(𝑧)

where 𝜌𝑖 is the density of atom i and 𝑞𝑖 is its charge.

18 Chapter 6. Contributing

http://www.archer.ac.uk
https://github.com/symmy596/polypy


polypy Documentation, Release 0.8.1

Electric Field and Electrostatic Potential

The charge density can be converted into the electric field and the electrostatic potential.

The electric field is calculated according to

𝐸(𝑧) =
1

−𝜖0

∫︁ 𝑧

𝑧0

𝜌𝑞(𝑧
′)𝑑𝑧′

where 𝜖0 is the permittivity of the vacuum and 𝜌𝑞 is the charge density. The electrostatic potential is calculated
according to

∆𝜓(𝑧) =

∫︁ 𝑧

𝑧0

𝐸(𝑧′)𝑑𝑧′

Mean Squared Displacement

Molecules in liquds, gases and solids do not stay in the same place and move constantly. Think about a drop of dye in a
glass of water, as time passes the dye distributes throughout the water. This process is called diffusion and is common
throughout nature and an incredibly relevant property for materials scientists who work on things like batteries.

Using the dye as an example, the motion of a dye molecule is not simple. As it moves it is jostled by collisions with
other molecules, preventing it from moving in a straight path. If the path is examined in close detail, it will be seen to
be a good approximation to a random walk. In mathmatics a random walk is a series of steps, each taken in a random
direction. This was analysed by Albert Einstein in a study of Brownian motion and he showed that the mean square of
the distance travelled by a particle following a random walk is proportional to the time elapsed.⟨

𝑟2𝑖
⟩︀

= 6𝐷𝑡 + 𝐶

where ⟨
𝑟2𝑖
⟩︀

=
1

3

⟨
|𝑟𝑖(𝑡) − 𝑟𝑖(0)|2

⟩
,

where
⟨
𝑟2
⟩︀

is the mean squared distance, t is time, 𝐷𝑡 is the diffusion rate and C is a constant. If
⟨
𝑟2𝑖
⟩︀

is plotted as a
function of time, the gradient of the curve obtained is equal to 6 times the self-diffusion coefficient of particle i.

What is the mean squared displacement

Going back to the example of the dye in water, lets assume for the sake of simplicity that we are in one dimension.
Each step can either be forwards or backwards and we cannot predict which. From a given starting position, what
distance is our dye molecule likely to travel after 1000 steps? This can be determined simply by adding together the
steps, taking into account the fact that steps backwards subtract from the total, while steps forward add to the total.
Since both forward and backward steps are equally probable, we come to the surprising conclusion that the probable
distance travelled sums up to zero.

By adding the square of the distance we will always be adding positive numbers to our total which now increases
linearly with time. Based upon equation 1 it should now be clear that a plot of

⟨
𝑟2𝑖
⟩︀

vs time with produce a line,
the gradient of which is equal to 6D. Giving us direct access to the diffusion coefficient of the system. The state of
the matter effects the shape of the MSD plot, solids, where little to no diffusion is occuring, has a flat MSD profile.
In a liquid however, the particles diffusion randomly and the gradient of the curve is proportional to the diffusion
coefficient.

6.6. API 19



polypy Documentation, Release 0.8.1

The following example is for fluorine diffusion in 𝐶𝑎𝐹2.

20 Chapter 6. Contributing



polypy Documentation, Release 0.8.1

6.6. API 21



polypy Documentation, Release 0.8.1

Ionic Conductivity

Usefully, as we have the diffusion coefficient, the number of particles (charge carriers) and the ability to calculate the
volume, we can convert this data into the ionic conductivity and then the resistance.

𝜎 =
𝐷𝐶𝐹 𝑒

2

𝑘𝐵𝑇
𝐻𝑟

where 𝜎 is the ionic conductivity, D is the diffusion coefficient,:math:C_F is the concentration of charge carriers, which
in this case if F ions, 𝑒2 is the charge of the diffusing species, 𝑘𝐵 is the Boltzmann constant, T is the temperature and
Hr is the Haven ratio.

The resistance can then be calculated according to

Ω =
1

𝜎

Arrhenius

It is possible to calculate the diffusion coefficients over a large temperature range and then use the Arrhenius equation
to calculate the activation energy for diffusion. Common sense and chemical intuition suggest that the higher the
temperature, the faster a given chemical reaction will proceed. Quantitatively this relationship between the rate a
reaction proceeds and its temperature is determined by the Arrhenius Equation. At higher temperatures, the probability
that two molecules will collide is higher. This higher collision rate results in a higher kinetic energy, which has an
effect on the activation energy of the reaction. The activation energy is the amount of energy required to ensure that a
reaction happens.

𝑘 = 𝐴𝑒(−𝐸𝑎/𝑅𝑇 )

where k is the rate coefficient, A is a constant, Ea is the activation energy, R is the universal gas constant, and T is the
temperature (in kelvin).

6.6.3 Using polypy

The are number of ways to get and use polypy

• Fork the code: please feel free to fork the code on Github and add functionality that interests you.

• Run it locally: polypy is available through the pip package manager.

• Get in touch: Adam R.Symington (ars44@bath.ac.uk) is always keen to chat to potential users.

6.6.4 Tutorials

These tutorials are replicated in jupyter notebook form and contained within examples. All of these examples can be
found in examples/notebooks.

All tutorials use fluorite 𝐶𝑒𝑂2 grain boundary as an example. Due to the large size of DL_POLY and DL_MONTE
trajectory files, the tutorial notebooks contained within the git repository use a very short 𝐶𝑎𝐹2 trajectory.

22 Chapter 6. Contributing

https://github.com/symmy596/PolyPy
mailto:ars44@bath.ac.uk
https://github.com/symmy596/PolyPy/tree/master/examples/notebooks


polypy Documentation, Release 0.8.1

Tutorial 1 - Reading data

The HISTORY, ARCHIVE and CONFIG classes expects two things, the filename of the history file and a list
of atoms to read. They will return a polypy.read.Trajectory object, which stores the the atom la-
bels (Trajectory.atom_list), datatype (Trajectory.datatype), cartesian coordinates (Trajectory.
cartesian_coordinates), fractiona coordinates (Trajectory.fractional_coordinates), recip-
rocal lattice vectors (Trajectory.reciprocal_lv), lattice vectors (Trajectory.lv) cell lengths
(Trajectory.cell_lengths), total atoms in the file (Trajectory.atoms_in_history), timesteps
(Trajectory.timesteps), total atoms per timestep (Trajectory.total_atoms).

HISTORY Files

from polypy import read as rd

history = rd.History("../example_data/HISTORY_CaF2", ["CA", "F"])

print(history.trajectory.fractional_trajectory)

[[0.5170937 0.51658126 0.51643485]
[0.51658126 0.61669107 0.61654466]
[0.61669107 0.51658126 0.61691069]
...
[0.46866197 0.25395423 0.58485915]
[0.37035211 0.58795775 0.45221831]
[0.36552817 0.48637324 0.17484859]]

print(history.trajectory.timesteps)

500

print(history.trajectory.atoms_in_history)

750000

print(history.trajectory.total_atoms)

1500

It is often necessary to remove the equilibriation timesteps from the simulation. This can be accomlished with the
remove_initial_timesteps method to remove timesteps at the start of the simulation and the remove_final_timesteps, to
remove timesteps at the end of the simulation.

new_history = history.trajectory.remove_initial_timesteps(10)
print(new_history.timesteps)

490

new_history = new_history.remove_final_timesteps(10)
print(new_history.timesteps)

6.6. API 23



polypy Documentation, Release 0.8.1

480

It is possible to return the trajectory for a single timestep within the history file or to return the trajectory for a single
atom.

config_ca = history.trajectory.get_atom("CA")

print(config_ca.fractional_trajectory)

[[0.5170937 0.51658126 0.51643485]
[0.51658126 0.61669107 0.61654466]
[0.61669107 0.51658126 0.61691069]
...
[0.31458099 0.41869718 0.41764085]
[0.42742958 0.32461268 0.42507042]
[0.42485915 0.42183099 0.31564789]]

config_1 = history.trajectory.get_config(1)

print(config_1.fractional_trajectory)

[[0.53227339 0.51016082 0.50950292]
[0.52116228 0.62894737 0.61761696]
[0.62240497 0.50526316 0.6056652 ]
...
[0.39444444 0.44974415 0.45102339]
[0.45599415 0.37865497 0.39890351]
[0.36343202 0.49309211 0.3690424 ]]

CONFIG Files

config = rd.Config("../example_data/CONFIG", ["CA", "F"])

print(config.trajectory.fractional_trajectory)

[[0.51666667 0.51666667 0.51666667]
[0.51666667 0.61666667 0.61666667]
[0.61666667 0.51666667 0.61666667]
...
[0.36666667 0.46666667 0.46666667]
[0.46666667 0.36666667 0.36666667]
[0.36666667 0.46666667 0.36666667]]

DLMONTE

archive = rd.Archive("../example_data/ARCHIVE_Short", ["AL"])

print(archive.trajectory.timesteps)

24 Chapter 6. Contributing



polypy Documentation, Release 0.8.1

1000

Volume

from polypy import analysis
from polypy import plotting
from polypy import read as rd
import matplotlib.pyplot as plt

history = rd.History("../example_data/HISTORY_CaF2", ["CA"])

volume, step = analysis.system_volume(history.trajectory)

ax = plotting.volume_plot(step, volume)
plt.show()

6.6. API 25



polypy Documentation, Release 0.8.1

26 Chapter 6. Contributing



polypy Documentation, Release 0.8.1

Atomic Density

Density Analysis

Understanding the positions of atoms in a material is incredibly useful when studying things like atomic structure and
defect segregation. Consider a system with an interface, it may be interesting to know how the distributions of the
materials atoms change at that interface, e.g is there an increase or decrease in the amount of a certain species at the
interface and does this inform you about any segregation behaviour?

This module of polypy allows the positions of atoms in a simulation to be evaluated in one and two dimensions, this
can then be converted into a charge density and (in one dimension) the electric field and electrostatic potential.

from polypy.read import History
from polypy.read import Archive
from polypy.density import Density
from polypy import analysis
from polypy import utils as ut
from polypy import plotting

import numpy as np
import matplotlib.pyplot as plt
import warnings
warnings.filterwarnings('ignore')

In this tutorial, we will use polypy to analyse a molecular dynamics simulation of a grain boundary in fluorite cerium
oxide and a Monte Carlo simulation of Al, Li and Li vacancy swaps in lithium lanthanum titanate.

Example 1 - Cerium Oxide Grain Boundary

In this example we will use polypy to analyse a molecular dynamics simulation of a grain boundary in cerium oxide.

The first step is to read the data. We want the data for both species so need to provide a list of the species.

["CE", "O"]

Note. In all examples, an xlim has been specified to highlight the grain boundary. Feel free to remove the ax.
set_xlim(42, 82) to see the whole plot.

history = History("../example_data/HISTORY_GB", ["CE", "O"])

print(np.amin(history.trajectory.cartesian_trajectory))
print(np.amax(history.trajectory.fractional_trajectory))

-63.929
0.9999993486383602

The next step is to create the density object for both species. In this example we create a seperate object for the cerium
and oxygen atoms and we will be analysing the positions to a resolution of 0.1 angstroms.

ce_density = Density(history.trajectory, atom="CE", histogram_size=0.1)
o_density = Density(history.trajectory, atom="O", histogram_size=0.1)

All subsequent analysis is performed on these two objects.

6.6. API 27



polypy Documentation, Release 0.8.1

One Dimension

The one_dimensional_density function will take a direction which corresponds to a dimension of the simula-
tion cell. For example, ‘x’ corresponds to the first lattice vector. The code will calculate the total number of a species
in 0.1 angstrom histograms along the first cell dimension.

The function will return the positions of the histograms and the total number of species. These can then be plotted
with the one_dimensional_density_plot function which takes a list of histogram values, a list of particle
densities and a list of labels.

cx, cy, c_volume = ce_density.one_dimensional_density(direction="z")
ox, oy, o_volume = o_density.one_dimensional_density(direction="z")

ax = plotting.one_dimensional_density_plot([cx, ox], [cy, oy], ["Ce", "O"])
ax.set_xlim(42, 82)
plt.show()

The particle densities can be combined with the atom charges to generate the one dimensional charge density according
to

𝜌𝑞(𝑧) =
∑︁
𝑖

𝑞𝑖𝜌𝑖(𝑧)

where 𝜌𝑖 is the particle density of atom i and 𝑞𝑖 is its charge.

The OneDimensionalChargeDensity class is used for the charge density, electric field and electrostatic poten-
tial. It requires a list of particle densities, list of charges, the histogram volume and the total number of timesteps.

28 Chapter 6. Contributing



polypy Documentation, Release 0.8.1

charge = analysis.OneDimensionalChargeDensity(ox, [oy, cy], [-2.0, 4.0], c_volume,
→˓history.trajectory.timesteps)

dx, charge_density = charge.calculate_charge_density()

ax = plotting.one_dimensional_charge_density_plot(dx, charge_density)
ax.set_xlim(42, 82)

plt.show()

The charge density can be converted into the electric field and the electrostatic potential.

𝐸(𝑧) =
1

−𝜖0

∫︁ 𝑧

𝑧0

𝜌𝑞(𝑧
′)𝑑𝑧′

∆𝜓(𝑧) =

∫︁ 𝑧

𝑧0

𝐸(𝑧′)𝑑𝑧′

where 𝜌𝑖 is the charge density and 𝜖0 is the permittivity of free space The calculate_electric_field and
calculate_electrostatic_potential functions will return the electric field and the electrostatic potential.

dx, electric_field = charge.calculate_electric_field()

ax = plotting.electric_field_plot(dx, electric_field)
ax.set_xlim(42, 82)
plt.show()

6.6. API 29



polypy Documentation, Release 0.8.1

dx, electrostatic_potential = charge.calculate_electrostatic_potential()

ax = plotting.electrostatic_potential_plot(dx, electrostatic_potential)
ax.set_xlim(42, 82)

plt.show()

30 Chapter 6. Contributing



polypy Documentation, Release 0.8.1

Two Dimensions

The particle density can be evaluated in two dimensions. The two_dimensional_density function will calcu-
late the total number of species in histograms. The coordinates in x and y of the box are returned and a grid of species
counts are returned.

In this example, the colorbar has been turned off, we are using a grey palette and the data is being plotted on a log
scale.

cx_2d, cy_2d, cz_2d, c_volume = ce_density.two_dimensional_density(direction="x")
ox_2d, oy_2d, oz_2d, o_volume = o_density.two_dimensional_density(direction="x")

fig, ax = plotting.two_dimensional_density_plot(cx_2d, cy_2d, cz_2d, colorbar=False,
→˓palette="Greys", log=True)
ax.set_xlim(42, 82)
ax.axis('off')
plt.show()

fig, ax = plotting.two_dimensional_density_plot(ox_2d, oy_2d, oz_2d, colorbar=False,
→˓palette="Greys", log=True)
ax.set_xlim(42, 82)
ax.axis('off')
plt.show()

6.6. API 31



polypy Documentation, Release 0.8.1

In the same fashion as the one dimensional case, the charge density can be evaluated in two dimensions using the
two_dimensional_charge_density function. This function requires the two dimensional array of atom po-
sitions, the atom charges, the volume at each grid point and the total number of timesteps in the simulation.

charge_density = analysis.two_dimensional_charge_density([oz_2d, cz_2d], [-2.0, 4.0],
→˓o_volume, history.trajectory.timesteps)

(continues on next page)

32 Chapter 6. Contributing



polypy Documentation, Release 0.8.1

(continued from previous page)

fig, ax = plotting.two_dimensional_charge_density_plot(ox_2d, oy_2d, charge_density,
→˓palette='bwr')
ax.set_xlim(42, 82)
plt.show()

One and Two Dimensions

The contour plots can give a good understanding of the average positions of the atoms (or the location of
the lattice sites) however it does not give a good representation of how many species are actually there. The
combined_density_plot function will evaluate the particle density in one and two dimensions and then overlay
the two on to a single plot, allowing both the lattice sites, and total density to be viewed.

In this example we are using an orange palette and orange line color for the cerium atoms, a blue palette and blue line
for the oxygen positions and the data is plotted on a log scale.

fig, ax = plotting.combined_density_plot(cx_2d, cy_2d, cz_2d, palette="Oranges",
→˓linecolor="orange", log=True)
for axes in ax:

axes.set_xlim(42, 82)
plt.show()

fig, ax = plotting.combined_density_plot(ox_2d, oy_2d, oz_2d, palette="Blues",
→˓linecolor="blue", log=True)
for axes in ax:

(continues on next page)

6.6. API 33



polypy Documentation, Release 0.8.1

(continued from previous page)

axes.set_xlim(42, 82)
plt.show()

34 Chapter 6. Contributing



polypy Documentation, Release 0.8.1

Finally, polypy.plotting has some functions that will generate a single contour plot for all species. This function
requires the a list of x axes, a list of y axes, a list of two dimensional arrays corresponding to the x and y axes and a
list of color palettes.

fig, ax = plotting.two_dimensional_density_plot_multiple_species([cx_2d, ox_2d], [cy_
→˓2d, oy_2d],

[cz_2d, oz_2d], [
→˓"Blues", "Oranges"],

log=True)
ax.set_xlim(42, 82)
plt.show()

6.6. API 35



polypy Documentation, Release 0.8.1

When analysing things like the electrostatic potential, it is useful to be able to view how the electrostatic potential
changes with structure, it is very easy to use the polypy.plotting functions in conjunction with matplotlib to
visualise the relationships.

fig, ax = plotting.two_dimensional_density_plot_multiple_species([cx_2d, ox_2d], [cy_
→˓2d, oy_2d],

[cz_2d, oz_2d], [
→˓"Blues", "Oranges"],

log=True)
ax.set_xlim(42, 82)
ax2 = ax.twinx()
ax2.plot(dx, electrostatic_potential, color="green")
ax2.set_ylabel("Electrostatic Potential (V)")
plt.show()

36 Chapter 6. Contributing



polypy Documentation, Release 0.8.1

Finally, polypy.plotting can generate a contour plot showing the number density in one and two dimensions in
a single plot. This function requires the a list of x axes, a list of y axes, a list of two dimensional arrays corresponding
to the x and y axes, a list of color palettes, a list of labels and a list of line colors.

fig, ax = plotting.combined_density_plot_multiple_species(x_list=[cx_2d, ox_2d],
y_list=[cy_2d, oy_2d],
z_list=[cz_2d, oz_2d],
palette_list=["Blues",

→˓"Oranges"],
label_list=['Ce', 'O'],
color_list=["blue", "orange

→˓"],
log=True)

for axes in ax:
axes.set_xlim(42, 82)

plt.show()

6.6. API 37



polypy Documentation, Release 0.8.1

Example 2 - Li, Al and Li vacancy swaps

In this example we will analyse a Monte Carlo simulation of Al doped lithium lanthanum titanate. It is possible to use
molecular dynamics simulations to study defect segregation if the defects have a relatively high diffusion coefficient.
One could randomly dope a configuration, run a long molecular dynamics simulation and then analyse the evolution
of the defect locations. When the diffusion coefficient of your defect is very low, it is not possible to use molecular
dynamics simulations to study defect segregation because you would need a huge MD simulation, in order to record
enough statistics. Monte Carlo simulations allow you to perform unphysical moves and with a comparitively small
Monte Carlo simulation, you can generate enough statistics to reliably study things like defect segregation.

In this example, we are analysing a MC simulation of Al in LLZO. 𝐴𝑙3+ has been doped on the 𝐿𝑖+ sites and charge
compensating Li vacancies have been added. Ultimately, we want to calculate how the Al doping effects the Li
conductivity, however without a representative distribution of Al/Li/Li vacancies we can’t calculate a representative
conductivity. After 10 ns of MD, the distribution of Al was unchanged, so Monte Carlo simulations with swap moves
are needed to shake up the distribution. The following swap moves were used;

• Al <-> Li

• Al <-> 𝑉𝐿𝑖

• Li <-> 𝑉𝐿𝑖

ARCHIVE_LLZO is a short MC trajectory that we will analyse.

First we will extract and plot the configuration at the first timestep and then we will plot the positions across the whole
simulation to see how the distributions have changed.

38 Chapter 6. Contributing



polypy Documentation, Release 0.8.1

archive = Archive("../example_data/ARCHIVE_LLZO", ["LI", "AL", "LV"])
config_1 = archive.trajectory.get_config(1)

Timestep 1

li_density = Density(config_1, atom="LI", histogram_size=0.1)
al_density = Density(config_1, atom="AL", histogram_size=0.1)
lv_density = Density(config_1, atom="LV", histogram_size=0.1)

lix, liy, li_volume = li_density.one_dimensional_density(direction="y")
alx, aly, al_volume = al_density.one_dimensional_density(direction="y")
lvx, lvy, lv_volume = lv_density.one_dimensional_density(direction="y")

ax = plotting.one_dimensional_density_plot([lix, lvx, alx], [liy, lvy, aly], ["Li", "
→˓$V_{Li}$", "Al"])
plt.show()

Full Simulation

Disclaimer. This is a short snapshot of a simulation and is not fully equilibriated, however it provides an example of
the polypy functionailty.

Interestingly, what we find is that the Al, Li and 𝑉𝐿𝑖 tend to distribute in an even pattern within the structure. This is
in sharp contrast to the distribution at the start of the simulation.

6.6. API 39



polypy Documentation, Release 0.8.1

li_density = Density(archive.trajectory, atom="LI", histogram_size=0.1)
al_density = Density(archive.trajectory, atom="AL", histogram_size=0.1)
lv_density = Density(archive.trajectory, atom="LV", histogram_size=0.1)

lix, liy, li_volume = li_density.one_dimensional_density(direction="y")
alx, aly, al_volume = al_density.one_dimensional_density(direction="y")
lvx, lvy, lv_volume = lv_density.one_dimensional_density(direction="y")

ax = plotting.one_dimensional_density_plot([lix, lvx, alx], [liy, lvy, aly], ["Li", "
→˓$V_{Li}$", "Al"])
plt.show()

lix_2d, liy_2d, liz_2d, li_volume = li_density.two_dimensional_density(direction="z")
alx_2d, aly_2d, alz_2d, al_volume = al_density.two_dimensional_density(direction="z")
lvx_2d, lvy_2d, lvz_2d, lv_volume = lv_density.two_dimensional_density(direction="z")

fig, ax = plotting.two_dimensional_density_plot_multiple_species([alx_2d, lvx_2d],
→˓[aly_2d, lvy_2d],

[alz_2d, lvz_2d], [
→˓"Blues", "Oranges"],

log=True, figsize=(6,
→˓ 6))
plt.show()

40 Chapter 6. Contributing



polypy Documentation, Release 0.8.1

fig, ax = plotting.combined_density_plot_multiple_species(x_list=[lix_2d, alx_2d, lvx_
→˓2d],

y_list=[liy_2d, aly_2d, lvy_
→˓2d],

z_list=[liz_2d, alz_2d, lvz_
→˓2d],

palette_list=["Greens",
→˓"Blues", "Oranges"],

label_list=["Li", 'Al', '$V_
→˓{Li}$'],

color_list=["green", "blue",
→˓ "orange"],

log=True, figsize=(6, 6))
plt.show()

6.6. API 41



polypy Documentation, Release 0.8.1

Mean Squared Displacement MSD

Mean Squared Displacement (MSD)

Molecules in liquds, gases and solids do not stay in the same place and move constantly. Think about a drop of dye in a
glass of water, as time passes the dye distributes throughout the water. This process is called diffusion and is common
throughout nature and an incredibly relevant property for materials scientists who work on things like batteries.

Using the dye as an example, the motion of a dye molecule is not simple. As it moves it is jostled by collisions with
other molecules, preventing it from moving in a straight path. If the path is examined in close detail, it will be seen to
be a good approximation to a random walk. In mathmatics a random walk is a series of steps, each taken in a random
direction. This was analysed by Albert Einstein in a study of Brownian motion and he showed that the mean square of
the distance travelled by a particle following a random walk is proportional to the time elapsed.⟨

𝑟2𝑖
⟩︀

= 6𝐷𝑡 + 𝐶

where ⟨
𝑟2𝑖
⟩︀

=
1

3

⟨
|𝑟𝑖(𝑡) − 𝑟𝑖(0)|2

⟩
where

⟨
𝑟2
⟩︀

is the mean squared distance, t is time, 𝐷𝑡 is the diffusion rate and C is a constant. If
⟨
𝑟2𝑖
⟩︀

is plotted
as a function of time, the gradient of the curve obtained is equal to 6 times the self-diffusion coefficient of particle i.
The state of the matter effects the shape of the MSD plot, solids, where little to no diffusion is occuring, has a flat
MSD profile. In a liquid however, the particles diffusion randomly and the gradient of the curve is proportional to the
diffusion coefficient.

42 Chapter 6. Contributing



polypy Documentation, Release 0.8.1

What is the mean squared displacement

Going back to the example of the dye in water, lets assume for the sake of simplicity that we are in one dimension.
Each step can either be forwards or backwards and we cannot predict which. From a given starting position, what
distance is our dye molecule likely to travel after 1000 steps? This can be determined simply by adding together the
steps, taking into account the fact that steps backwards subtract from the total, while steps forward add to the total.
Since both forward and backward steps are equally probable, we come to the surprising conclusion that the probable
distance travelled sums up to zero.

By adding the square of the distance we will always be adding positive numbers to our total which now increases
linearly with time. Based upon equation 1 it should now be clear that a plot of

⟨
𝑟2𝑖
⟩︀

vs time with produce a line, the
gradient of which is equal to 6D. Giving us direct access to the diffusion coefficient of the system.

from polypy import read as rd
from polypy.msd import MSD
from polypy.msd import RegionalMSD
from polypy import analysis
from polypy import utils as ut
from polypy import plotting
import numpy as np
import matplotlib.pyplot as plt

This example will use a short (50,000 steps), pre-prepared trajectory of bulk 𝐶𝑎𝐹2. In reality we probably want a
considerably longer simulation (~10,000,000 steps). Such simulations generate huge files (5GB) and the analysis
would take too long for this tutorial.

The first step is to read the history file to generate the data. The HISTORY class expects two things, the
filename of the history file and a list of atoms to read. It will return a polypy.read.Trajectory ob-
ject, which stores the the atom labels (Trajectory.atom_labels), datatype (Trajectory.data_type),
cartesian coordinates (Trajectory.cartesian_coordinates), fractiona coordinates (Trajectory.
fractional_coordinates), reciprocal lattice vectors (Trajectory.reciprocal_lv), lattice vectors
(Trajectory.lv) cell lengths (Trajectory.cell_lengths), total atoms in the file (Trajectory.
atoms_in_history), timesteps (Trajectory.timesteps), total atoms per timestep (Trajectory.
total_atoms).

history_caf2 = rd.History("../example_data/HISTORY_CaF2", ["F"])

Once the data has been read into the code the MSD calculation can be performed using the MSD class. The code will
return a polypy.MSD.MSDContainer object, which contains the MSD information.

f_msd = MSD(history_caf2.trajectory, sweeps=2)

output = f_msd.msd()

ax = plotting.msd_plot(output)

plt.show()

6.6. API 43



polypy Documentation, Release 0.8.1

MSD calculations require a large number of statistics to be considered representative. A full msd will use every single
frame of the trajectory as a starting point and effectively do a seperate msd from each starting point, these are then
averaged to give the final result. An MSD is technically an ensemble average over all sweeps and number of particles.
The sweeps paramter is used to control the number of frames that are used as starting points in the calculation. For
simulations with lots of diffusion events, a smaller number will be sufficient whereas simulations with a small number
of diffusion events will require a larger number.

f_msd = MSD(history_caf2.trajectory, sweeps=10)

output = f_msd.msd()

ax = plotting.msd_plot(output)
plt.show()

44 Chapter 6. Contributing



polypy Documentation, Release 0.8.1

print("Three Dimensional Diffusion Coefficient", output.xyz_diffusion_coefficient())
print("One Dimensional Diffusion Coefficient in X", output.x_diffusion_coefficient())
print("One Dimensional Diffusion Coefficient in Y", output.y_diffusion_coefficient())
print("One Dimensional Diffusion Coefficient in Z", output.z_diffusion_coefficient())

Three Dimensional Diffusion Coefficient 1.6078332646337548
One Dimensional Diffusion Coefficient in X 1.6045620180115865
One Dimensional Diffusion Coefficient in Y 1.6856414148385679
One Dimensional Diffusion Coefficient in Z 1.5332963610511103

Note: An MSD is supposed to be linear only after a ballistic regime and it usually lacks statistics for longer times.
Thus the linear fit to extract the slope and thus the diffusion coefficient should be done on a portion of the MSD only.
This can be accomplished using the exclude_initial and exclude_final parameters

print("Three Dimensional Diffusion Coefficient", output.xyz_diffusion_
→˓coefficient(exclude_initial=50,

→˓exclude_final=50))
print("One Dimensional Diffusion Coefficient in X", output.x_diffusion_
→˓coefficient(exclude_initial=50,

→˓exclude_final=50))
print("One Dimensional Diffusion Coefficient in Y", output.y_diffusion_
→˓coefficient(exclude_initial=50,

→˓exclude_final=50))
print("One Dimensional Diffusion Coefficient in Z", output.z_diffusion_
→˓coefficient(exclude_initial=50,

→˓exclude_final=50))

6.6. API 45



polypy Documentation, Release 0.8.1

Three Dimensional Diffusion Coefficient 1.5912662736409342
One Dimensional Diffusion Coefficient in X 1.5862517497696607
One Dimensional Diffusion Coefficient in Y 1.6753802400942055
One Dimensional Diffusion Coefficient in Z 1.5121668310589353

Arrhenius

It is then possible to take diffusion coefficients, calculated over a large temperature range and, using the Arrhenius
equation calculate the activation energy for diffusion. Common sense and chemical intuition suggest that the higher
the temperature, the faster a given chemical reaction will proceed. Quantitatively this relationship between the rate a
reaction proceeds and its temperature is determined by the Arrhenius Equation. At higher temperatures, the probability
that two molecules will collide is higher. This higher collision rate results in a higher kinetic energy, which has an
effect on the activation energy of the reaction. The activation energy is the amount of energy required to ensure that a
reaction happens.

𝑘 = 𝐴 * 𝑒(−𝐸𝑎/𝑅𝑇 )

where k is the rate coefficient, A is a constant, Ea is the activation energy, R is the universal gas constant, and T is the
temperature (in kelvin).

Ionic Conductivity

Usefully, as we have the diffusion coefficient, the number of particles (charge carriers) and the ability to calculate the
volume, we can convert this data into the ionic conductivity and then the resistance.

𝜎 =
𝐷𝐶𝐹 𝑒

2

𝑘𝐵𝑇

where 𝜎 is the ionic conductivity, D is the diffusion coefficient, 𝐶𝐹 is the concentration of charge carriers, which in
this case if F ions, 𝑒2 is the charge of the diffusing species, 𝑘𝐵 is the Boltzmann constant and T is the temperature.

The resitance can then be calculated according to

Ω =
1

𝜎

So the first step is to calculate the volume, the system voume module will do this from the given data.

volume, step = analysis.system_volume(history_caf2.trajectory)
average_volume = np.mean(volume[:50])

The number of charge carriers is just the total number of atoms.

sigma = analysis.conductivity(history_caf2.trajectory.total_atoms,
average_volume,
output.xyz_diffusion_coefficient(),
1500, 1)

print("Ionic Conductivity :", sigma)

Ionic Conductivity : 0.0008752727736501591

46 Chapter 6. Contributing



polypy Documentation, Release 0.8.1

print("Resistivity :", (1 / sigma))

Resistivity : 1142.5009781004494

Simulation Length

It is important to consider the lenght of your simulation (Number of steps). The above examples use a short trajectory
but it is at a sufficient temperature that there are enough diffusion events to get a good MSD plot. The following
example is of a very short simulation, you will hopefully note that the MSD plot is clearly not converged.

history_short = rd.History("../example_data/HISTORY_short", atom_list=["F"])

f_msd_short = MSD(history_short.trajectory, sweeps=2)

output = f_msd_short.msd()

ax = plotting.msd_plot(output)
plt.show()

print("Three Dimensional Diffusion Coefficient", output.xyz_diffusion_coefficient())
print("One Dimensional Diffusion Coefficient in X", output.x_diffusion_coefficient())
print("One Dimensional Diffusion Coefficient in Y", output.y_diffusion_coefficient())
print("One Dimensional Diffusion Coefficient in Z", output.z_diffusion_coefficient())

Three Dimensional Diffusion Coefficient 1.58656319093229
One Dimensional Diffusion Coefficient in X 1.5739020833099904

(continues on next page)

6.6. API 47



polypy Documentation, Release 0.8.1

(continued from previous page)

One Dimensional Diffusion Coefficient in Y 1.630216356788139
One Dimensional Diffusion Coefficient in Z 1.5555711326987387

Amusingly, this actually does not seem to have a huge effect on the diffusion coefficient compared to the longer
simulation. However these trajectories are from a CaF2 simulation at 1500 K and there are thus a large number of
diffusion events in the short time frame.

State of Matter

It is possible to identify the phase of matter from the MSD plot.

The fluorine diffusion discussed already clearly shows that the fluorine sub lattice has melted and the diffusion is liquid
like. Whereas, carrying out the same analysis on the calcium sub lattice shows that while the fluorine sub lattice has
melted, the Calcium sub lattice is still behaving like a solid.

f_msd = MSD(history_caf2.trajectory, sweeps=2)

output = f_msd.msd()

ax = plotting.msd_plot(output)
plt.show()

Regional MSD Calculations

Often in solid state chemistry simulations involve defects, both structural e.g. grain boundaries, dislocations and
surface, and chemical e.g. point defects. It is important to try and isolate the contributions of these defects to the

48 Chapter 6. Contributing



polypy Documentation, Release 0.8.1

overall properties. Regarding diffusion, it could be imagined that a certain region within a structure will have different
properties compared with the stoichiometric bulk, e.g. a grain boundary vs the grains, or the surface vs the bulk.
polypy has the capability to isolate trajectories that pass within certain regions of a structure and thus calculate a
diffusion coefficient for those regions.

In this example we will calculate the diffusion coefficient in a box between -5.0 and 5.0 in the dimension of the first
lattice vector.

f_msd = RegionalMSD(history_caf2.trajectory, -5, 5, dimension="x")
output = f_msd.analyse_trajectory()

ax = plotting.msd_plot(output)

plt.show()

Figures/output_26.png

print("Three Dimensional Diffusion Coefficient", output.xyz_diffusion_coefficient())
print("One Dimensional Diffusion Coefficient in X", output.x_diffusion_coefficient())
print("One Dimensional Diffusion Coefficient in Y", output.y_diffusion_coefficient())
print("One Dimensional Diffusion Coefficient in Z", output.z_diffusion_coefficient())

Three Dimensional Diffusion Coefficient 1.597047044241002
One Dimensional Diffusion Coefficient in X 1.6120172452124801
One Dimensional Diffusion Coefficient in Y 1.671268658071343
One Dimensional Diffusion Coefficient in Z 1.5078552294391845

DLMONTE

archive = rd.Archive("../example_data/ARCHIVE_LLZO", atom_list=["O"])

f_msd = MSD(archive.trajectory, sweeps=2)

---------------------------------------------------------------------------

ValueError Traceback (most recent call last)

<ipython-input-20-2e636209fda5> in <module>
----> 1 f_msd = MSD(archive.trajectory, sweeps=2)

/opt/anaconda3/lib/python3.7/site-packages/polypy-0.7-py3.7.egg/polypy/msd.py in __
→˓init__(self, data, sweeps)

153 raise ValueError("ERROR: MSD can only handle one atom type.
→˓Exiting")

154 if data.data_type == "DL_MONTE ARCHIVE":
--> 155 raise ValueError("DLMONTE simulations are not time resolved")

156 self.distances = []
157 self.msd_information = MSDContainer()

(continues on next page)

6.6. API 49



polypy Documentation, Release 0.8.1

(continued from previous page)

ValueError: DLMONTE simulations are not time resolved

6.6.5 API

polypy.analysis

Analysis functions

class polypy.analysis.OneDimensionalChargeDensity(histogram_positions,
atom_densities, atom_charges,
histogram_volume, timesteps)

Bases: object

The polypy.analysis.OneDimensionalChargeDensity class converts one dimensional number
densitie into the charge density, electric field and electrostatic potential.

Parameters

• histogram_positions (array_like) – Histogram locations.

• atom_densities (list) – List of histograms.

• atom_charges (list) – List of atom charges.

• histogram_volume (float) – Volume of the histograms.

• timesteps (float) – Simulation timestep.

calculate_charge_density()
Calculates the charge density in one dimension.

Returns Charge density.

Return type charge_density (array_like)

calculate_electric_field()
Calculates the electric field.

Returns Electric field.

Return type e_field (array_like)

calculate_electrostatic_potential()
Calculates the electrostatic potential.

Returns Electrostatic potential.

Return type potential (array_like)

polypy.analysis.conductivity(charge_carriers, volume, diff, temperature, hr)
Calculate the ionic conductivity.

Parameters

• charge_carriers (float) – Number of charge carriers.

• volume (float) – Average cell volume.

• diff (float) – Diffusion coefficient.

• temperature (float) – Temperature.

50 Chapter 6. Contributing



polypy Documentation, Release 0.8.1

• hr (float) – Haven ratio.

Returns Ionic conductivity.

Return type conductivity (float)

polypy.analysis.system_volume(data)
Calculate the volume at each timestep and return a volume as function of time.

Parameters data (polypy.read.Trajectory) – polypy Trajectory object.

Returns Volume as a function of timestep. step (array_like): Timestep.

Return type volume (array_like)

polypy.analysis.two_dimensional_charge_density(atoms_coords, atom_charges,
bin_volume, timesteps)

Calculates the charge density in two dimensions.

Parameters

• atoms_coords (list) – List of atomic coordinates

• atom_charges (list) – List of atomic charges

• bin_volume (float) – Volume of histograms

Returns Charge density.

Return type charge_density (array_like)

polypy.density

Density functions included with polypy. The Density class will determine generate a three dimensional grid that stores
the total number of times that an atom spends within a xyz grid point during the simulation.

class polypy.density.Density(data, histogram_size=0.1, atom=None)
Bases: object

The polypy.density.Density class evaluates the positions of all atoms in the simulation.

Parameters

• data (polypy.read.Trajectory) – Object containing the information from the HIS-
TORY or ARCHIVE files.

• histogram_size (float, optional) – Specifies the spacing between histograms.

• atom (str, optional) – Specifies the atom to calculate the density for.

build_map()
Constructs three dimensional grid of histogram_size * histogram_size * histogram_size. containing a
count for how many times an atom passes through each histogram_size ** 3 cube.

find_limits()
Determine the upper and lower limits of the simulation cell in all three dimensions.

one_dimensional_density(direction=’x’)
Calculate the particle density within one dimensional histograms of a structure.

Parameters direction (str) – The dimension perpendicular to the histograms.

Returns Locations of histograms. y (array_like): Size of histograms. bin_volume
(float): Volume of histograms.

Return type x (array_like)

6.6. API 51



polypy Documentation, Release 0.8.1

two_dimensional_density(direction=’x’)
Calculate the particle density within two dimensional pixels of a structure.

Parameters direction (str) – The dimension normal to the pixels.

Returns Locations of one dimension of the pixels. y (array_like): Locations of one di-
mension of the pixels. z (array_like): Size of pixels. bin_volume (float): Volume of
pixels.

Return type x (array_like)

update_map(position)
Determines the specific location of a given atom and adds it to the corresponding location in the three
dimensional map of atomic positions.

polypy.msd

MSD functions included with polypy. There are two MSD classes and one class to store the data generated from the
MSD calculation. The first class performs a standard MSD calculation for the entire dataset while the second class
will perform an MSD calculation within a specified region of the simulation cell.

class polypy.msd.MSD(data, sweeps=1)
Bases: object

The polypy.msd.MSD class calculates the mean squared displacements for a given atom.

Parameters

• data (polypy.read.Trajectory) – Object containing the information from the HIS-
TORY or ARCHIVE files.

• sweeps (int, optional) – How many times should the starting timestep be changed. De-
fault is 1.

calculate_distances(trajectories, start)
Calculates the distances.

Parameters

• trajectories (array_like) – Fractional coordinates.

• start (float) – Timestep to start the calculation.

Returns Distances. timestamp (array_like): Timesteps.

Return type distances (array_like)

msd()
Calculates the mean squared displacement for the trajectory.

Returns Object containing the information for the MSD.

Return type (polypy.msd.MSDContainer)

one_dimension_square_distance(distances, run)
Calculate the MSD in one dimension.

Parameters

• distances (array_like) – Distances.

• run (float) – Timestep to start the calculation.

squared_displacements(distances, run)
Calculates the squared distances.

52 Chapter 6. Contributing



polypy Documentation, Release 0.8.1

Parameters

• distances (array_like) – Distances.

• run (float) – Timestep to start the calculation.

three_dimension_square_distance(distances, run)
Calculate the MSD in three dimensions.

Parameters

• distances (array_like) – Distances.

• run (float) – Timestep to start the calculation.

two_dimension_square_distance(distances, run)
Calculate the MSD in two dimensions.

Parameters

• distances (array_like) – Distances.

• run (float) – Timestep to start the calculation.

class polypy.msd.MSDContainer
Bases: object

The polypy.msd.MSDContainer class stores the output from the msd calculation.

clean_data()
Post msd the data is a list of time vs msd for each run. This needs to be normalised to give one continuous
series of points.

smooth_msd_data(x, y)
Smooths the data from the smoothed msd function. The data consists of multiple msd runs but the data is
unordered. This function will order the data and average all y values with equivalent x values.

Parameters

• x (array_like) – Time data.

• y (array_like) – MSD data.

Returns Time / MSD data.

Return type z (array_like)

x_diffusion_coefficient(exclude_initial=0, exclude_final=1)
Calculates the one dimensional x diffusion coefficient.

Returns x Diffusion coefficient.

Return type (float)

xy_diffusion_coefficient(exclude_initial=0, exclude_final=1)
Calculates the two dimensional xy diffusion coefficient.

Returns xy Diffusion coefficient.

Return type (float)

xyz_diffusion_coefficient(exclude_initial=0, exclude_final=1)
Calculates the three dimensional xyz diffusion coefficient.

Returns xyx Diffusion coefficient.

Return type (float)

6.6. API 53



polypy Documentation, Release 0.8.1

xz_diffusion_coefficient(exclude_initial=0, exclude_final=1)
Calculates the two dimensional xz diffusion coefficient.

Returns xz Diffusion coefficient.

Return type (float)

y_diffusion_coefficient(exclude_initial=0, exclude_final=1)
Calculates the one dimensional y diffusion coefficient.

Returns y Diffusion coefficient.

Return type (float)

yz_diffusion_coefficient(exclude_initial=0, exclude_final=1)
Calculates the two dimensional yz diffusion coefficient.

Returns yz Diffusion coefficient.

Return type (float)

z_diffusion_coefficient(exclude_initial=0, exclude_final=1)
Calculates the one dimensional z diffusion coefficient.

Returns z Diffusion coefficient.

Return type (float)

class polypy.msd.RegionalMSD(data, lower_boundary, upper_boundary, dimension=’x’, sweeps=1,
trajectory_length=100)

Bases: object

The polypy.msd.RegionalMSD class calculates the mean squared displacements for a given atom in a
specific region of a simulation cell.

Parameters

• data (polypy.read.Trajectory) – Object containing the information from the HIS-
TORY or ARCHIVE files.

• lower_boundary (float) – Coordinate of the lower limit of the region of interest.

• upper_boundary (int, optional) – Coordinate of the upper limit of the region of inter-
est.

• dimension (int, optional) – Direction perpedicular to the region of interest. Default is
'x'.

• sweeps (int, optional) – How many times should the starting timestep be changed. De-
fault is 1.

analyse_trajectory()
Analyse the trajectory object.

Returns MSDContainer object - MSD information.

Return type msd_information (polypy.msd.MSDContainer)

check_trajectory(trajectory, xc)
Analyse the trajectory of an individual atom.

Parameters

• trajectory (polypy.read.Trajectory) – Trajectory object.

• xc (array_like) – Coordinates perpendicular to the region of interest.

54 Chapter 6. Contributing



polypy Documentation, Release 0.8.1

initialise_new_trajectory()
Create a new MSDContainer object, specific to slice of a trajectory.

Returns MSDContainer object.

Return type new_trajectory (polypy.msd.MSDContainer)

update_msd_info(container)
Adds the information calculated for a single atom to the information of the whole trajectory.

Parameters container (polypy.msd.MSDContainer) – MSDContainer object - single
atom.

polypy.plotting

Plotting functions included with polypy.

polypy.plotting.combined_density_plot(x, y, z, xlab=’X Coordinate ($\\AA$)’, ylab=’Y
Coordinate ($\\AA$)’, y2_lab=’Number Density’,
palette=’viridis’, linecolor=’black’, figsize=(10, 6),
log=False)

Plots the distribution of an atom species in two dimensions and overlays the one dimensional density on top.
Think of it as a combination of the two_dimensional_density_plot and one_dimensional_density_plot functions

Parameters

• x (array like) – x axis points - x axis coordinates.

• y (array like) – y axis points - y axis coordinates.

• z (array like) – z axis points - 2D array of points.

• xlab (str) – x axis label. Default is "X Coordinate ($AA$)"

• ylab (str) – y axis label. Default is "Y Coordinate ($AA$)"

• y2_lab (str) – second y axis label. Default is "Particle Density"

• fig_size (tuple) – Horizontal and veritcal size for figure (in inches). Default is (10,
6).

• log (bool) – Log the z data or not? This can sometimes be useful but obviously one needs
to be careful

• drawing conclusions from the data. (when) –

Returns Figure object (list): List of axes objects.

Return type (matplotlib.Fig)

polypy.plotting.combined_density_plot_multiple_species(x_list, y_list, z_list,
palette_list, label_list,
color_list, xlab=’X Coor-
dinate ($\\AA$)’, ylab=’Y
Coordinate ($\\AA$)’,
figsize=(10, 6), log=False)

Plots the distribution of a list of atom species in two dimensions. Returns heatmaps for each species stacking on
top of one another. It also plots the same density in one dimension on top of the heatmaps.

Parameters

• x (list) – x axis points - x axis coordinates.

• y (list) – y axis points - y axis coordinates.

6.6. API 55



polypy Documentation, Release 0.8.1

• z (list) – z axis points - 2D array of points.

• palette_list (list) – Color palletes for each atom species.

• label_list (list) – List of species labels.

• color_list (list) – List of colors for one dimensional plot.

• xlab (str) – x axis label. Default is "X Coordinate ($AA$)"

• ylab (str) – y axis label. Default is "Y Coordinate ($AA$)"

• fig_size (tuple) – Horizontal and veritcal size for figure (in inches). Default is (10,
6).

Returns Figure object (list): List of axes objects.

Return type (matplotlib.Fig)

polypy.plotting.electric_field_plot(x, y, xlab=’X Coordinate ($\\AA$)’, ylab=’Electric Field
(V)’, figsize=(10, 6))

Gathers the data and creates a line plot for the electric field in one dimension.

Parameters

• x (array like) – x axis points - position in simulation cell

• y (array like) – y axis points - electric field

• xlab (str) – x axis label. Default is "X Coordinate ($AA$)"

• ylab (str) – y axis label. Default is "Electric Field (V)"

• fig_size (tuple) – Horizontal and veritcal size for figure (in inches). Default is (10,
6).

Returns The axes with new plots.

Return type (matplotlib.axes.Axes)

polypy.plotting.electrostatic_potential_plot(x, y, xlab=’X Coordinate ($\\AA$)’,
ylab=’Electrostatic Potential (V)’, fig-
size=(10, 6))

Gathers the data and creates a line plot for the electrostatic potential in one dimension.

Parameters

• x (array like) – x axis points - position in simulation cell

• y (array like) – y axis points - electrostatic potential

• xlab (str) – x axis label. Default is "X Coordinate ($AA$)"

• ylab (str) – y axis label. Default is "Electrostatic Potential (V)"

• fig_size (tuple) – Horizontal and veritcal size for figure (in inches). Default is (10,
6).

Returns The axes with new plots.

Return type (matplotlib.axes.Axes)

polypy.plotting.line_plot(x, y, xlab, ylab, figsize=(10, 6))
Simple line plotting function. Designed to be generic and used in several different applications.

Parameters

• x (array like) – x axis points.

56 Chapter 6. Contributing



polypy Documentation, Release 0.8.1

• y (array like) – y axis points.

• xlab (str) – x axis label.

• ylab (str) – y axis label.

• fig_size (tuple) – Horizontal and veritcal size for figure (in inches). Default is (10,
6).

Returns The axes with new plots.

Return type (matplotlib.axes.Axes)

polypy.plotting.msd_plot(msd_data, show_all_dimensions=True, figsize=(10, 6))
Plotting function for the mean squared displacements (MSD).

Parameters

• msd_data ():py:class:polypy.msd.MSDContainer) – MSD data.

• show_all_dimensions (bool) – Display all MSD data or the total MSD. Default is
bool

• fig_size (tuple) – Horizontal and veritcal size for figure (in inches). Default is (10,
6).

Returns The axes with new plots.

Return type (matplotlib.axes.Axes)

polypy.plotting.one_dimensional_charge_density_plot(x, y, xlab=’X Coordinate
($\\AA$)’, ylab=’Charge Den-
sity’, figsize=(10, 6))

Gathers the data and creates a line plot for the charge density in one dimension.

Parameters

• x (array like) – x axis points - position in simulation cell

• y (array like) – y axis points - charge density

• xlab (str) – x axis label. Default is "X Coordinate ($AA$)"

• ylab (str) – y axis label. Default is "Charge Density"

• fig_size (tuple) – Horizontal and veritcal size for figure (in inches). Default is (10,
6).

Returns The axes with new plots.

Return type (matplotlib.axes.Axes)

polypy.plotting.one_dimensional_density_plot(x, y, data_labels, xlab=’X Coordinate
($\\AA$)’, ylab=’Particle Density’, fig-
size=(10, 6))

Plots the number density of all given species in one dimension.

Parameters

• x (list) – x axis points - list of numpy arrays containing x axis coordinates.

• y (list) – y axis points - list of numpy arrays containing y axis coordinates.

• data_labels (list) – List of labels for legend.

• xlab (str) – x axis label. Default is "X Coordinate ($AA$)"

• ylab (str) – y axis label. Default is "Particle Density"

6.6. API 57



polypy Documentation, Release 0.8.1

• fig_size (tuple) – Horizontal and veritcal size for figure (in inches). Default is (10,
6).

Returns The axes with new plots.

Return type (matplotlib.axes.Axes)

polypy.plotting.two_dimensional_charge_density_plot(x, y, z, xlab=’X Coordinate
($\\AA$)’, ylab=’Y Coordinate
($\\AA$)’, palette=’viridis’,
figsize=(10, 6), colorbar=True,
log=False)

Plots the charge density in two dimensions.

Parameters

• x (array like) – x axis points - x axis coordinates.

• y (array like) – y axis points - y axis coordinates.

• z (array like) – z axis points - 2D array of points.

• xlab (str) – x axis label. Default is "X Coordinate ($AA$)"

• ylab (str) – y axis label. Default is "Y Coordinate ($AA$)"

• fig_size (tuple) – Horizontal and veritcal size for figure (in inches). Default is (10,
6).

• colorbar (bool) – Include the colorbar or not.

Returns Figure object (matplotlib.axes.Axes): The axes with new plots.

Return type (matplotlib.Fig)

polypy.plotting.two_dimensional_density_plot(x, y, z, xlab=’X Coordinate ($\\AA$)’,
ylab=’Y Coordinate ($\\AA$)’,
palette=’viridis’, figsize=(10, 6), col-
orbar=True, log=False)

Plots the distribution of an atom species in two dimensions.

Parameters

• x (array like) – x axis points - x axis coordinates.

• y (array like) – y axis points - y axis coordinates.

• z (array like) – z axis points - 2D array of points.

• xlab (str) – x axis label. Default is "X Coordinate ($AA$)"

• ylab (str) – y axis label. Default is "Y Coordinate ($AA$)"

• fig_size (tuple) – Horizontal and veritcal size for figure (in inches). Default is (10,
6).

• colorbar (bool) – Include the colorbar or not.

• log (bool) – Log the z data or not? This can sometimes be useful but obviously one needs
to be careful

• drawing conclusions from the data. (when) –

Returns Figure object (matplotlib.axes.Axes): The axes with new plots.

Return type (matplotlib.Fig)

58 Chapter 6. Contributing



polypy Documentation, Release 0.8.1

polypy.plotting.two_dimensional_density_plot_multiple_species(x_list, y_list,
z_list, palette_list,
xlab=’X Coor-
dinate ($\\AA$)’,
ylab=’Y Coordi-
nate ($\\AA$)’,
y2_lab=’Number
Density’, fig-
size=(10, 6),
log=False)

Plots the distribution of a list of atom species in two dimensions. Returns heatmaps for each species stacking on
top of one another. This is limited to four species.

Parameters

• x_list (array like) – x axis points - x axis coordinates.

• y_list (array like) – y axis points - y axis coordinates.

• z_list (array like) – z axis points - 2D array of points.

• palette_list (array like) – Color palletes for each atom species.

• xlab (str) – x axis label. Default is "X Coordinate ($AA$)"

• ylab (str) – y axis label. Default is "Y Coordinate ($AA$)"

• y2_lab (str) – second y axis label. Default is "Particle Density"

• fig_size (tuple) – Horizontal and veritcal size for figure (in inches). Default is (10,
6).

• log (bool) – Log the z data or not? This can sometimes be useful but obviously one needs
to be careful

• drawing conclusions from the data. (when) –

Returns Figure object (matplotlib.axes.Axes): The axes with new plots.

Return type (matplotlib.Fig)

polypy.plotting.volume_plot(x, y, xlab=’Timestep (ps)’, ylab=’System Volume ($\\AA$)’, fig-
size=(10, 6))

Gathers the data and creates a line plot for the system volume as a function of simulation timesteps

Parameters

• x (array like) – x axis points - simulation timesteps

• y (array like) – y axis points - Volume

• xlab (str) – x axis label. Default is "Timestep (ps)"

• ylab (str) – y axis label. Default is "System Volume ($AA$)"

• fig_size (tuple) – Horizontal and veritcal size for figure (in inches). Default is (10,
6).

Returns The axes with new plots.

Return type (matplotlib.axes.Axes)

6.6. API 59



polypy Documentation, Release 0.8.1

polypy.read

Read functions of polypy. Herein contains classes to read DL_POLY HISTORY / CONFIG files and DL_MONTE
ARCHIVE files. All of the data that is extracted from these files is stored in a trajectory class that is compatible with
all three file types.

class polypy.read.Archive(file, atom_list)
Bases: object

The polypy.read.Trajectory class evaluates the positions of all atoms in a ARCHIVE.

Parameters

• atom_list (list) – List of unique atom names in trajectory.

• datatype (str) – Datatype of the original dataset e.g. DL_MONTE ARCHIVE.

read_archive()
Read a DL_MONTE ARCHIVE file line by line and updates a polypy.read.Trajectory object.

class polypy.read.Config(file, atom_list)
Bases: object

The polypy.read.Trajectory class evaluates the positions of all atoms in a CONFIG.

Parameters

• atom_list (list) – List of unique atom names in trajectory.

• datatype (str) – Datatype of the original dataset e.g. DL_POLY CONFIG.

read_config()
Read a DL_POLY HISTORY file line by line and updates a polypy.read.Trajectory object.

class polypy.read.History(file, atom_list)
Bases: object

The polypy.read.Trajectory class evaluates the positions of all atoms in the simulation.

Parameters

• atom_list (list) – List of unique atom names in trajectory.

• datatype (str) – Datatype of the original dataset e.g. DL_POLY HISTORY.

read_history()
Reads a DL_POLY HISTORY file line by line and updates a polypy.read.Trajectory object.

class polypy.read.Trajectory(atom_list, datatype)
Bases: object

The polypy.read.Trajectory class evaluates the positions of all atoms in the simulation.

Parameters

• atom_list (list) – List of unique atom names in trajectory.

• datatype (str) – Datatype of the original dataset

• DL_POLY HISTORY or CONFIG. (e.g.) –

get_atom(atom)
Isolates the trajectory for a specific atom type.

Parameters atom (str) – Atom label.

Returns Trajectory object for desired atom.

60 Chapter 6. Contributing



polypy Documentation, Release 0.8.1

Return type atom_trajectory (polypy.read.Trajectory)

get_config(timestep)
Isolates a specific DL_POLY CONFIG from a HISTORY file.

Parameters timestep (int) – Timestep of desired CONFIG.

Returns Trajectory object for desired CONFIG.

Return type config_trajectory (polypy.read.Trajectory)

remove_final_timesteps(timesteps_to_exclude)
Removes timesteps from the end of a simulation

Parameters timesteps_to_exclude (int) – Number of timesteps to exclude

Returns Trajectory object.

Return type new_trajectory (polypy.read.Trajectory)

remove_initial_timesteps(timesteps_to_exclude)
Removes timesteps from the beggining of a simulation

Parameters timesteps_to_exclude (int) – Number of timesteps to exclude

Returns Trajectory object.

Return type new_trajectory (polypy.read.Trajectory)

polypy.utils

Util functions

polypy.utils.calculate_rcplvs(lv)
Convert cartesian lattice vectors to the fractional lattice vectors

Parameters lv (array_like, optional) – Lattice vectors

Returns Reciprcocal lattice vectors lengths (array_like, optional): Cell lengths

Return type rcplvs (array_like, optional)

polypy.utils.cart_2_frac(coord, lengths, rcplvs)
Convert cartesian coordinates to the fractional coordinates

Parameters

• coord (array_like, optional) – Cartesian coordinates

• lengths (array_like, optional) – Cell lengths

• rcplvs (array_like, optional) – Reciprcocal lattice vectors

Returns Reciprcocal coordinates

Return type coords (array_like, optional)

polypy.utils.pbc(rnew, rold)
Periodic boundary conditions for an msd calculation

Parameters

• rnew (float, optional) – New atomic position

• rold (float, optional) – Previous atomic position

Returns Has the atom cross a PBC? rnew (float, optional): New position

6.6. API 61



polypy Documentation, Release 0.8.1

Return type cross (bool, optional)

62 Chapter 6. Contributing



CHAPTER 7

indices and tables

• genindex

• modindex

• search

63



polypy Documentation, Release 0.8.1

64 Chapter 7. indices and tables



Python Module Index

p
polypy.analysis, 50
polypy.density, 51
polypy.msd, 52
polypy.plotting, 55
polypy.read, 60
polypy.utils, 61

65



polypy Documentation, Release 0.8.1

66 Python Module Index



Index

A
analyse_trajectory() (polypy.msd.RegionalMSD

method), 54
Archive (class in polypy.read), 60

B
build_map() (polypy.density.Density method), 51

C
calculate_charge_density()

(polypy.analysis.OneDimensionalChargeDensity
method), 50

calculate_distances() (polypy.msd.MSD
method), 52

calculate_electric_field()
(polypy.analysis.OneDimensionalChargeDensity
method), 50

calculate_electrostatic_potential()
(polypy.analysis.OneDimensionalChargeDensity
method), 50

calculate_rcplvs() (in module polypy.utils), 61
cart_2_frac() (in module polypy.utils), 61
check_trajectory() (polypy.msd.RegionalMSD

method), 54
clean_data() (polypy.msd.MSDContainer method),

53
combined_density_plot() (in module

polypy.plotting), 55
combined_density_plot_multiple_species()

(in module polypy.plotting), 55
conductivity() (in module polypy.analysis), 50
Config (class in polypy.read), 60

D
Density (class in polypy.density), 51

E
electric_field_plot() (in module

polypy.plotting), 56

electrostatic_potential_plot() (in module
polypy.plotting), 56

F
find_limits() (polypy.density.Density method), 51

G
get_atom() (polypy.read.Trajectory method), 60
get_config() (polypy.read.Trajectory method), 61

H
History (class in polypy.read), 60

I
initialise_new_trajectory()

(polypy.msd.RegionalMSD method), 54

L
line_plot() (in module polypy.plotting), 56

M
MSD (class in polypy.msd), 52
msd() (polypy.msd.MSD method), 52
msd_plot() (in module polypy.plotting), 57
MSDContainer (class in polypy.msd), 53

O
one_dimension_square_distance()

(polypy.msd.MSD method), 52
one_dimensional_charge_density_plot()

(in module polypy.plotting), 57
one_dimensional_density()

(polypy.density.Density method), 51
one_dimensional_density_plot() (in module

polypy.plotting), 57
OneDimensionalChargeDensity (class in

polypy.analysis), 50

67



polypy Documentation, Release 0.8.1

P
pbc() (in module polypy.utils), 61
polypy.analysis (module), 50
polypy.density (module), 51
polypy.msd (module), 52
polypy.plotting (module), 55
polypy.read (module), 60
polypy.utils (module), 61

R
read_archive() (polypy.read.Archive method), 60
read_config() (polypy.read.Config method), 60
read_history() (polypy.read.History method), 60
RegionalMSD (class in polypy.msd), 54
remove_final_timesteps()

(polypy.read.Trajectory method), 61
remove_initial_timesteps()

(polypy.read.Trajectory method), 61

S
smooth_msd_data() (polypy.msd.MSDContainer

method), 53
squared_displacements() (polypy.msd.MSD

method), 52
system_volume() (in module polypy.analysis), 51

T
three_dimension_square_distance()

(polypy.msd.MSD method), 53
Trajectory (class in polypy.read), 60
two_dimension_square_distance()

(polypy.msd.MSD method), 53
two_dimensional_charge_density() (in mod-

ule polypy.analysis), 51
two_dimensional_charge_density_plot()

(in module polypy.plotting), 58
two_dimensional_density()

(polypy.density.Density method), 51
two_dimensional_density_plot() (in module

polypy.plotting), 58
two_dimensional_density_plot_multiple_species()

(in module polypy.plotting), 58

U
update_map() (polypy.density.Density method), 52
update_msd_info() (polypy.msd.RegionalMSD

method), 55

V
volume_plot() (in module polypy.plotting), 59

X
x_diffusion_coefficient()

(polypy.msd.MSDContainer method), 53

xy_diffusion_coefficient()
(polypy.msd.MSDContainer method), 53

xyz_diffusion_coefficient()
(polypy.msd.MSDContainer method), 53

xz_diffusion_coefficient()
(polypy.msd.MSDContainer method), 53

Y
y_diffusion_coefficient()

(polypy.msd.MSDContainer method), 54
yz_diffusion_coefficient()

(polypy.msd.MSDContainer method), 54

Z
z_diffusion_coefficient()

(polypy.msd.MSDContainer method), 54

68 Index


	Installation
	Tests
	Documentation
	License
	Detailed requirements
	Contributing
	indices and tables
	Python Module Index
	Index

